# LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

M.Sc. DEGREE EXAMINATION - MATHEMATICS

FIRST SEMESTER – NOVEMBER 2015

## MT 1819 - PROBABILITY THEORY & STOCHASTIC PROCESSES

Date : 12/11/2015

Dept. No.

Max.: 100 Marks

Time : 01:00-04:00

Section – A

### Answer all the questions

10 x 2 = 20 marks

- 1. If three fair coins are flipped, find the probability of getting at least one head.
- 2. Let an urn contain 7 white and 5 red marbles. If three marbles are chosen without replacement, find the probability of getting at least one red marble.
- 3. If two fair dice are rolled, find the probability of the sum to be 5 given that the sum is at least 3.
- 4. Define probability mass function of a random variable.
- 5. When binomial tends to Poisson distribution ?
- 6. Define marginal and conditional distributions.
- 7. Write any two properties of normal distribution.
- 8. Define convergence in probability.
- 9. Write the sufficient conditions for consistency of an estimator.
- 10. What is Markov property ?

#### Section-B

#### Answer any five questions

#### 5x8= 40 marks

- 11. State and prove addition theorem on probability for 'n' events.
- 12. If  $f(x) = x^2/18$ , -3 < x < 3, zero elsewhere, find (i) P ( X < 1) (ii) P ( X<sup>2</sup> < 9).
- 13. Derive mean and variance of binomial distribution.
- 14. Let  $X_1, X_2, X_3$  be a random sample from a distribution of the continuous type having the p.d.f. f(x) = 2x, 0 < x < 1, zero elsewhere. Compute the probability that the smallest of these  $X_i$  exceeds the median of the distribution.
- 15. If X<sub>1</sub>,X<sub>2</sub>,..., X<sub>n</sub> is a random sample from N( 0,  $\sigma^2$  ), find the maximum likelihood estimator of  $\sigma^2$ .



- 16.Ten individuals are chosen at random from a normal population and their heights are found to be 63,63,66,67,68,69,70,70,71,71 inches. Test if the sample belongs to the population whose mean height is 66 inches. Use 5% significance level.
- 17. State and prove Boole's inequality.
- 18. If a Markov chain has the following transition probability matrix

|     | 0   | 0   | 1   | 0 |
|-----|-----|-----|-----|---|
|     | 1   | 0   | 0   | 0 |
| P = | 1/2 | 1/2 | 0   | 0 |
|     | 1/3 | 1/3 | 1/3 | 0 |

- (i) Determine the classes and the periodicity of the states.
- (ii) Check for the recurrence of the states.

#### Section-C

| Answer any two questions                                                                                                                                                                        | 2 x 20 = 40 marks       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| 19.(a) State and prove Bayes' theorem.                                                                                                                                                          | (6 marks )              |
| (b) If $f(x) = (1/2)^x$ , $x = 1, 2, 3$ , zero elsewhere, compute<br>Pr( $\mu - 2\sigma < X < \mu + 2\sigma$ ).                                                                                 | (7marks)                |
| (c) Let X have the p.d.f. $f(x) = 2(1-x)$ , $0 < x < 1$ , zero elsewhere, find mean and variance.                                                                                               | (7 marks )              |
| 20.(a) Derive the MGF of normal distribution.                                                                                                                                                   | (10 marks)              |
| (b) If X is N (75,100) , find (i) Pr ( X < 60 ) (ii) P ( $70 < X < 100$ )                                                                                                                       | (10 marks)              |
| 21.(a) Let $X_1$ and $X_2$ have the joint p.d.f. $f(x_1,x_2) = x_1 + x_2$ , $0 < x_1 < 1$ , $0 < x_2 < 1$ , zero elsewhere. Find the conditional mean and variance of $X_2$ given $X_1 = x_2$ . | $x_{1}, 0 < x_{1} < 1.$ |
| (b) Derive mean and variance of beta distribution of first kind.                                                                                                                                | (12marks)<br>(8 marks)  |
| 22.(a) State and prove central limit theorem.                                                                                                                                                   | (10 marks)              |
| (b) Derive $P_n(t)$ for Poisson process clearly stating the postulates.                                                                                                                         | ( <b>10 marks</b> )     |

\*\*\*\*\*